


AERIAL AAC / 1350 BS STANDARD 80mm² - 250mm²

APPLICATION

7 and 19 strand construction is suitable for bare overhead reticulation of medium spans, normally at low and medium voltages.

37 and 61 strand construction is suitable for transmission and subtransmission lines for short span projects. Also used as flexible bus bar

AAC = All Aluminium Conductor.

STANDARD BS 215 Part 1:1970

CONDUCTOR Aluminium Alloy 1350

STRAND CONSTRUCTION As Below

Code Name	Conductor Aluminium		Nominal Overall Diameter mm	Calculated Min Breaking Load	Final Modulus of Elasticity	Coefficient of Linear Expansion	Approximate Mass kg/km	Max. Packing
	Area mm²	Makeup No./mm		kN	GPa	/° x 10 ⁻⁵	,	m
Grasshopper	84.1	7/3.91	11.7	12.8	59	23	230	2000
Clegg	95.6	7/4.17	12.5	14.5	59	23	262	2000
Wasp	106.2	7/4.39	13.2	16.0	59	23	290	1500
Beetle	106.4	19/2.67	13.4	17.4	56	23	293	2500
Weke	122.5	7/4.72	14.2	18.5	59	23	335	1500
Bee	132.0	7/4.90	14.7	19.9	59	23	361	1500
Hornet	157.6	19/3.25	16.3	24.7	56	23	434	2000
Cricket	157.9	7/5.36	16.1	23.9	59	23	432	1500
Weta	167.5	19/3.55	16.8	26.2	56	23	461	2000
Caterpillar	185.9	19/3.53	17.7	28.6	56	23	512	2000
Chafer	213.2	19/3.78	18.9	32.4	56	23	587	2000
Mata	222.3	19/3.86	19.3	33.8	56	23	612	2000
Spider	237.6	19/3.99	20.0	36.0	56	23	654	2000

CONDUCTOR	ELECTRICAL CHARACTERISTICS									
CODE NAME	Equivalent Electrical Areas	Maximum DC Resistance @20°C		Ratings @ 5°C	Inductive Reactance to 0.4m	Single Phase Voltage Drop @ 0.4m spacing mV/A.m				
	Aluminium mm²		Winter Night	Summer Noon						
		Ω/km	Α	Α	Ω/km					
Grasshopper	84	0.341	426	356	0.300	1.03				
Clegg	95.6	0.299	463	386	0.296	0.941				
Wasp	106.2	0.27	495	413	0.293	0.883				
Beetle	106.4	0.27	497	414	0.289	0.877				
Weke	122.5	0.234	544	453	0.288	0.810				
Bee	132	0.217	570	474	0.286	0.780				
Hornet	157.6	0.183	640	530	0.277	0.711				
Cricket	157.9	0.181	639	530	0.280	0.715				
Weta	167.5	0.172	667	552	0.275	0.691				
Caterpillar	185.9	0.155	712	589	0.271	0.662				
Chafer	213.2	0.135	776	641	0.267	0.629				
Mata	222.3	0.129	798	658	0.266	0.619				
Spider	237.6	0.121	830	684	0.264	0.606				

Wind Speed 1m/sec, air temp. 10°C for winter night, 40°C for summer noon, intensity of solar radiation 1000 W/m² for summer noon

DOMINION WIRE & CABLES LTD.

QUALITY CABLE MANUFACTURES, DISTRIBUTORS AND EXPORTERS LOT 3, KINGS ROAD, YALALEVU, BA. P.O. BOX 1562, BA, FIJI.

PHONE: (679)6675244 FAX: (679)6670023,

E-Mail: sales@dominioncables.com web: www.dominioncables.com

Dominion Cables is a leader in the Cable Industry. The services of sales and technical staff are always available to assist with any enquiry.

The Dominion Cables policy is one of continual improvement. Details as published may be subject to change.

This brochure is distributed with the understanding that the authors and editors are not responsible for the results of any action taken on the basis of information in this work, or any errors or omissions. Further, Dominion Cables is not engaged in rendering professional services. Dominion Cables expressly disclaims all and any liability to any person in respect of anything and of the consequences of anything done or omitted to be done by any such person in reliance whether whole or partial of the whole or any part of the contents of this publication. All rights reserve